Devoir surveillé 3

Mercredi 13 novembre 2024

Durée: 3h

Les calculatrices sont interdites. Les résultats des questions doivent être encadrés. Vous êtes invités à porter une attention particulière à la rédaction : les copies illisibles ou mal présentées seront pénalisées. Le sujet comporte 2 page(s).

Exercice 1.

1. Question préliminaire.

On considère une suite réelle $(a_n)_{n\in\mathbb{N}}$ croissante et convergente vers ℓ , et on pose, pour tout n de \mathbb{N}^* :

$$b_n = \frac{1}{n} \sum_{k=0}^{n-1} a_k$$

- (a) Établir, pour tout entier naturel n non nul, l'inégalité $b_n \leq a_n$.
- (b) Étudier la monotonie de la suite $(b_n)_{n\in\mathbb{N}^*}$.
- (c) Montrer que la suite $(b_n)_{n\in\mathbb{N}^*}$ converge vers un réel ℓ' qui vérifie $\ell'\leqslant\ell$.
- (d) Établir, pour tout entier naturel n non nul, l'inégalité suivante : $b_{2n} \geqslant \frac{b_n + a_n}{2}$
- (e) En déduire que $\lim_{n \to +\infty} b_n = \lim_{n \to +\infty} a_n$.

On se propose maintenant d'étudier la suite $(u_n)_{n\in\mathbb{N}}$ définie par la donnée de $u_0=1$ et par la relation, valable pour tout entier naturel n:

$$u_{n+1} = \sqrt{u_n^2 + u_n}$$

Pour tout entier naturel n non nul, on pose $S_n = \sum_{k=0}^{n-1} u_k$.

- 2. (a) Montrer que, pour tout entier naturel n, u_n est bien défini et supérieur ou égal a 1.
 - (b) Étudier les variations de la suite (u_n) .
 - (c) Établir que la suite (u_n) diverge et donner sa limite.
 - (d) Recopier et compléter le script Python suivant afin qu'il permette de déterminer et d'afficher la plus petite valeur de n pour laquelle on a $S_n > 1000$.

- 3. (a) Montrer que $\lim_{n \to +\infty} (u_{n+1} u_n) = \frac{1}{2}$.
 - (b) Étudier les variations de la fonction f définie sur $[1, +\infty[$ par $f(x) = \sqrt{x^2 + x} x$, puis en déduire que la suite $(u_{n+1} u_n)_{n \in \mathbb{N}}$ est croissante.
 - (c) Utiliser la première question pour établir que : $\lim_{n\to+\infty} \frac{u_n}{n} = \frac{1}{2}$.
- 4. (a) Exprimer S_n en fonction de u_n pour tout $n \in \mathbb{N}^*$.
 - (b) En déduire la limite de $\frac{S_n}{n^2}$ lorsque n tend vers $+\infty$.
 - (c) Recopier et compléter le script Python suivant afin qu'il fasse le même travail que celui de la question 2d sans calculer S_n :

Exercice 2.

Soit n un entier naturel supérieur ou égal à 2. On considère la matrice carrée d'ordre n dont tous les coefficients diagonaux sont égaux à 0, et dont tous les autres coefficients sont égaux à 1 :

$$M_n = \begin{pmatrix} 0 & 1 & \cdots & 1 \\ 1 & 0 & \ddots & \vdots \\ \vdots & \ddots & \ddots & 1 \\ 1 & \cdots & 1 & 0 \end{pmatrix}$$

On note I_n la matrice identité d'ordre n.

1. Étude du cas n=3.

Dans cette question, on considère les matrice $M = \begin{pmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{pmatrix}$ et $P = \begin{pmatrix} 1 & 1 & 1 \\ -1 & 0 & 1 \\ 0 & -1 & 1 \end{pmatrix}$.

- (a) Calculer $M^2 M$.
- (b) Montrer que M est inversible et donner son inverse.
- (c) Montrer que P est inversible et déterminer P^{-1} .

(d) On pose
$$D = P^{-1}MP$$
. Montrer que $D = \begin{pmatrix} -1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 2 \end{pmatrix}$.

- (e) Montrer que, pour tout entier naturel k, on a $M^k = PD^kP^{-1}$.
- (f) Soit k un entier naturel. En utilisant les résultats des questions précédentes, montrer qu'il existe deux réels a_k et b_k (que l'on déterminera) tels que $M^k = a_k M + b_k I_3$.

2. Cas général : n est un entier naturel quelconque supérieur ou égal à 2.

On considère la matrice J_n carrée d'ordre n dont tous les coefficients sont égaux à 1 :

$$J_n = \begin{pmatrix} 1 & 1 & \cdots & 1 \\ 1 & 1 & \ddots & \vdots \\ \vdots & \ddots & \ddots & 1 \\ 1 & \cdots & 1 & 1 \end{pmatrix}$$

- (a) Montrer que, pour tout entier naturel k non nul, on a $(J_n)^k = n^{k-1}J_n$.
- (b) Exprimer M_n en fonction de I_n et J_n , puis en déduire que, pour tout entier naturel k non nul, on a $(M_n)^k = c_k J_n + (-1)^k I_n$ où c_k est un réel que l'on déterminera.
- (c) En déduire, pour tout entier naturel k non nul, une expression des coefficients diagonaux et des coefficients non diagonaux de $(M_n)^k$, en fonction de n et de k.