Devoir maison 6

Pour le lundi 6 janvier 2025

Partie I: Etude d'une fonction.

Soit la fonction f définie sur $]-\frac{1}{2},+\infty[$ par :

$$\begin{cases} \forall x \in] -\frac{1}{2}, 0[\cup]0, +\infty[, \quad f(x) = \frac{\ln(1+2x)}{x} - 1\\ f(0) = 1 \end{cases}$$

- 1. (a) Montrer que f est continue sur son ensemble de définition. On admet que f est dérivable en 0 et que f'(0) = -2.
 - (b) Etudier les variations de f.
 - (c) Montrer que f s'annule en un unique point α . Montrer que $\alpha \in]1,2[$.

Partie II : Etude d'une suite convergeant vers α .

Soit la suite $(u_n)_{n\in\mathbb{N}}$ telle que : $u_0 > 0$ et pour tout n dans \mathbb{N} : $u_{n+1} = \ln(1 + 2u_n) = g(u_n)$.

- 1. Vérifier que u_n est bien défini pour tout n dans \mathbb{N} .
- 2. On suppose dans cette question que $(u_n)_{n\in\mathbb{N}}$ converge. Que vaut alors sa limite L?
- 3. (a) On suppose que u_0 est dans l'intervalle $]0, \alpha]$.

 Montrer que, alors, pour tout n, u_n est dans l'intervalle $]0, \alpha]$.

 Puis montrer que la suite $(u_n)_{n\in\mathbb{N}}$ est croissante et convergente vers α .
 - (b) Montrer, de manière analogue, que $(u_n)_{n\in\mathbb{N}}$ converge aussi vers α si on suppose u_0 dans $]\alpha, +\infty[$.
- 4. On pose $u_0 = 1$.
 - (a) Montrer que, pour tout n dans \mathbb{N} , on a $u_n \in [1, \alpha]$.
 - (b) Montrer que, pour tout n dans \mathbb{N} , $|u_{n+1} \alpha| \leq \frac{2}{3}|u_n \alpha|$.
 - (c) En déduire que, pour tout n dans \mathbb{N} , $|u_n \alpha| \leq \left(\frac{2}{3}\right)^n$.
 - (d) Au vu de cette majoration, à partir de quel rang n est-on sûr que u_n est une valeur approchée de α à 10^{-4} près?