Fonctions numériques réelles

GÉNÉRALITÉS

Exercice 1. On considère la fonction f définie sur $\mathbb{R} \setminus \{-1\}$ par $f(x) = \frac{x^2 + e^x}{x+1}$ pour tout $x \in \mathbb{R} \setminus \{-1\}$. On note Γ la courbe représentative de la fonction f dans un repère orthonormé. Montrer que la courbe Γ admet en $-\infty$ une asymptote oblique.

Exercice 2. Montrer que la fonction $\mathbb{R} \longrightarrow \mathbb{R}$ est croissante $x \longmapsto |x|$

Exercice 3. Soit $f: \mathbb{R} \longrightarrow \mathbb{R}$ une fonction croissante telle que $f \circ f = \mathrm{id}_{\mathbb{R}}$. Montrer que $f = \mathrm{id}_{\mathbb{R}}$.

Exercice 4. Montrer qu'une fonction décroissante f de [a,b] dans [a,b] admet au plus un point fixe dans [a,b].

Exercice 5. Soit $f: \mathbb{R} \longrightarrow \mathbb{R}$ une fonction vérifiant

$$\forall x \in \mathbb{R}, \ f(x) \leqslant x$$
 et $\forall (x,y) \in \mathbb{R}^2, \ f(x+y) \leqslant f(x) + f(y)$

- 1. Montrer que f(0) = 0.
- 2. Montrer que f est impaire.
- 3. En déduire que $f = id_{\mathbb{R}}$.

Exercice 6. Soient f et g deux fonctions réelles bornées définies sur une partie non vide D de \mathbb{R} . Montrer que : $\sup_{D} |f + g| \leqslant \sup_{D} |f| + \sup_{D} |g|$. Y-a-t-il égalité ?

CALCULS DE LIMITES

Exercice 7. Calculer les limites suivantes :

- 1. $\lim_{x \to -\infty} \left(-x^2(x+2) 1 \right)$
- $2. \lim_{x \to -\infty} -3x\left(x + \frac{3}{x}\right)$
- 3. $\lim_{x \to +\infty} (-x^3 + 2x^2 4)$
- 4. $\lim_{x \to -\infty} (-x^3 + 2x^2 4)$
- 5. $\lim_{x \to +\infty} \frac{9x^3 + 1}{x^2 4x + 5}$
- 6. $\lim_{x \to -\infty} \frac{9x^3 + 1}{x^2 4x + 5}$
- 7. $\lim_{x \to +\infty} \frac{x^2 + 4x}{3x 1}$
- 8. $\lim_{x \to -\infty} \frac{(2x-3)^3}{-2x^2+8}$
- 9. $\lim_{x \to 1^+} \frac{x^3 x}{x 1}$
- 10. $\lim_{x \to 0^+} \left(\frac{1}{x} + 2\right)(x^2 1)$
- 11. $\lim_{x \to +\infty} \left(\frac{1}{x} + 2\right)(x^2 1)$
- 12. $\lim_{x \to -\infty} \frac{(3-2x)^3}{1-x}$
- 13. $\lim_{x \to 1^{-}} \frac{(3-2x)^3}{1-x}$

- 14. $\lim_{x \to 0^+} \left(\frac{1}{x-4} \frac{1}{x} \right)$
- 15. $\lim_{x \to 4^{-}} \left(\frac{1}{x-4} \frac{1}{x} \right)$
- 16. $\lim_{x \to +\infty} \frac{\sqrt{x}}{x+1}$
- 17. $\lim_{x \to +\infty} \frac{x}{\sqrt{x} + 2}$
- 18. $\lim_{x \to -1^+} \sqrt{\frac{1-x}{1+x}}$
- $19. \lim_{x \to -\infty} \frac{x}{\sqrt{x^2 + 1}}$
- 20. $\lim_{x \to 2^{-}} \frac{x^2 x}{x 2}$
- 21. $\lim_{x \to -1} \left(3 \frac{2}{(x+1)^2} \right)$
- 22. $\lim_{x \to +\infty} \left(\frac{(x^2 x + 2)(3 x)}{(x 1)^2} + x 2 \right)$
- 23. $\lim_{x \to +\infty} (\sqrt{x^2 2x} x)$
- 24. $\lim_{x \to -\infty} (\sqrt{x^2 2x} x)$
- 25. $\lim_{x \to 3} \frac{\sqrt{x} \sqrt{3}}{x 3}$

- 26. $\lim_{x \to +\infty} x e^{-x}$
- 27. $\lim_{x \to -\infty} x e^{-x}$
- 28. $\lim_{x \to +\infty} (x+1+e^x)$
- 29. $\lim_{x \to -\infty} (x + 1 + e^x)$
- 30. $\lim_{x \to +\infty} (2e^x e^{2x})$
- $31. \lim_{x \to -\infty} (2e^x e^{2x})$
- 32. $\lim_{x \to +\infty} x(1 + e^{-2x})$
- 33. $\lim_{x \to -\infty} x(1 + e^{-2x})$
- 34. $\lim_{x \to +\infty} (x^2 2x + 6)e^x$
- 35. $\lim_{x \to -\infty} (x^2 2x + 6)e^x$
- $36. \lim_{x \to +\infty} e^{\frac{1}{x}}$
- 37. $\lim_{x \to 0^+} e^{\frac{1}{x}}$
- $38. \lim_{x \to +\infty} e^{\frac{x+1}{2x-3}}$
- 39. $\lim_{x \to \frac{3}{2}^+} e^{\frac{x+1}{2x-3}}$
- 40. $\lim_{x \to 0^+} (x+1)e^{-\frac{1}{x}}$

41.
$$\lim_{x \to 1^+} (x+2)e^{\frac{1}{x-1}}$$

42.
$$\lim_{x \to +\infty} (\sqrt{e^{2x} + 1} - e^x)$$

43.
$$\lim_{x \to +\infty} \frac{e^x + 1}{2 + e^x}$$

44.
$$\lim_{x \to -\infty} \frac{e^x + 1}{2 + e^x}$$

45.
$$\lim_{x \to -1^+} \frac{e^x}{x+1}$$

46.
$$\lim_{x \to +\infty} \frac{e^x}{x+1}$$

47.
$$\lim_{x \to +\infty} \frac{x^2 + 3x - 1}{e^x + 1}$$

48.
$$\lim_{x \to -\infty} \frac{x^2 + 3x - 1}{e^x + 1}$$

49.
$$\lim_{x \to +\infty} \frac{x^2 + 1}{e^{-x} - 1}$$

$$50. \lim_{x \to 0^+} \frac{x^2 + 1}{e^{-x} - 1}$$

51.
$$\lim_{x \to +\infty} (x+1)e^{\frac{x}{2}}$$

52.
$$\lim_{x \to -\infty} (x+1)e^{\frac{x}{2}}$$

53.
$$\lim_{x \to +\infty} (e^x - x^3 + 2x - 1)$$

54.
$$\lim_{x \to -\infty} (e^x - x^3 + 2x - 1)$$

55.
$$\lim_{x \to -\infty} ((x+1)e^x - 2)$$

56.
$$\lim_{x \to +\infty} ((x+1)e^x - 2)$$

57.
$$\lim_{x \to +\infty} x e^{-\frac{1}{x}}$$

58.
$$\lim_{x \to 0^+} x e^{-\frac{1}{x}}$$

59.
$$\lim_{x \to 0^+} \frac{1}{\ln x}$$

60.
$$\lim_{x \to 0^+} \left(\frac{1}{x} - \ln x \right)$$

61.
$$\lim_{x \to +\infty} \left(\frac{1}{x} - \ln x \right)$$

$$62. \lim_{x \to +\infty} \frac{-1}{-1 + \ln x}$$

63.
$$\lim_{x\to 0^+} \frac{-1}{-1 + \ln x}$$

64.
$$\lim_{x \to +\infty} \left((\ln x)^2 - \ln x \right)$$

65.
$$\lim_{x\to 0^+} ((\ln x)^2 - \ln x)$$

66.
$$\lim_{x \to 1^+} \ln(x^2 + 3x - 4)$$

67.
$$\lim_{x \to +\infty} \ln(x^2 + 3x - 4)$$

68.
$$\lim_{x \to +\infty} \ln \left(\frac{x^2 + x + 1}{x + 1} \right)$$

69.
$$\lim_{x\to 0^{-}} \ln\left(1+\frac{1}{x^{2}}\right)$$

70.
$$\lim_{x \to +\infty} \ln\left(1 + \frac{1}{x^2}\right)$$

71.
$$\lim_{x \to +\infty} \ln \left(\frac{e^x + 2}{e^x + 1} \right)$$

72.
$$\lim_{x \to -\infty} \ln \left(\frac{e^x + 2}{e^x + 1} \right)$$

73.
$$\lim_{x \to 0^+} \frac{1 - \ln x}{x}$$

74.
$$\lim_{x \to +\infty} \frac{1 - \ln x}{x}$$

75.
$$\lim_{x \to 0^+} x(1 - \ln x)$$

76.
$$\lim_{x \to +\infty} x(1 - \ln x)$$

77.
$$\lim_{x \to +\infty} \frac{x \ln x}{x^2 + 1}$$

78.
$$\lim_{x \to 0^+} \frac{x \ln x}{x^2 + 1}$$

79.
$$\lim_{x\to 0^+} (x^2 - x) \ln x$$

80.
$$\lim_{x \to +\infty} (2x + 1 - \ln x)$$

81.
$$\lim_{x \to +\infty} \left(-(\ln x)^2 - 2\ln x + x \ln x \right)$$

Exercice 8. Calculer les limites suivantes :

1.
$$\lim_{x \to +\infty} x(\sqrt{x^2 + 1} - x)$$

2.
$$\lim_{x\to 0} \frac{\sqrt{x^2+p^2}-p}{\sqrt{x^2+q^2}-q}$$
, avec $(p,q)\in (\mathbb{R}^*)^2$

Exercice 9. Calculer les limites suivantes :

$$1. \lim_{x \to 0} \sqrt{\frac{1}{1 - \cos x}}$$

$$2. \lim_{x \to -\infty} \frac{x}{2 - \cos x}$$

2.
$$\lim_{x \to -\infty} \frac{x}{2 - \cos x}$$
3.
$$\lim_{x \to \frac{\pi}{4}} \frac{\cos x - \sin x}{4x - \pi}$$

4.
$$\lim_{x \to \frac{\pi}{2}^{-}} (\tan^2 x - \tan x)$$

5. $\lim_{x \to \frac{\pi}{2}^{+}} (\tan^2 x - \tan x)$

6.
$$\lim_{x \to \frac{\pi}{4}^+} \frac{\tan x}{\tan x - 1}$$

7.
$$\lim_{x \to \frac{\pi}{2}^-} \frac{\tan x}{\tan x - 1}$$

$$8. \lim_{x \to \frac{\pi}{3}} \frac{\sin 3x}{1 - 2\cos x}$$

9.
$$\lim_{x \to 0} \frac{1 - \cos x}{x^2}$$

$$10. \lim_{x \to 0} \frac{x \sin x}{1 - \cos x}$$

11.
$$\lim_{x \to +\infty} \frac{x \sin x}{1 + x^2}$$

12.
$$\lim_{x \to 0} \sin(x) \sin\left(\frac{1}{x}\right)$$

13.
$$\lim_{x \to 0} x e^{\frac{1}{\sin x}}$$

14.
$$\lim_{\substack{x \to a \\ a \in \mathbb{R}^*}} \frac{\sin(ax) - \sin(x^2)}{a - x}, \quad \text{avec}$$

15.
$$\lim_{\substack{x\to 1\\a\in\mathbb{R}^*}}\frac{\cos(ax)-\cos(a)}{\mathrm{e}^{-ax^2}-\mathrm{e}^{-a}},\quad \text{ avec}$$

Exercice 10. Calculer les limites suivantes :

1.
$$\lim_{x \to +\infty} x \left[\frac{1}{x} \right]$$

$$2. \lim_{x \to -\infty} x \left| \frac{1}{x} \right|$$

$$3. \lim_{x \to 0} x \left\lfloor \frac{1}{x} \right\rfloor$$

4.
$$\lim_{x \to 0} \frac{x}{a} \left| \frac{b}{x} \right| \quad (a > 0, b > 0)$$

5.
$$\lim_{x \to 0^+} \sqrt{x} \left| \frac{1}{x} \right|$$

6.
$$\lim_{x \to 0} \frac{\lfloor 1/x \rfloor + x}{\lfloor 1/x \rfloor - x}$$

Exercice 11. Les limites suivantes existent-elles?

1.
$$\lim_{x \to +\infty} \frac{x^2 \sin x}{x^2 + 1}$$

$$2. \lim_{x \to +\infty} \frac{x^x}{\lfloor x \rfloor^{\lfloor x \rfloor}}$$

Etude de la continuité

Exercice 12. Est-il possible de prolonger par continuité les fonctions suivantes en x_0 ?

1.
$$x_0 = \frac{1}{2}$$
, $f: x \longmapsto \frac{6x^2 + 5x - 4}{2x - 1}$

3.
$$x_0 = 0$$
, $f: x \longmapsto \cos\left(\frac{1}{x}\right)$

2.
$$x_0 = 1$$
, $f: x \mapsto \ln(\sqrt{x} - 1) - \ln(x - 1)$

4.
$$x_0 = 0$$
, $f: x \longmapsto x^2 \cos\left(\frac{1}{x}\right)$

Exercice 13. Etudier la continuité des fonctions suivantes :

1.
$$f: x \longmapsto \begin{cases} x+1 & \text{si } x < 2 \\ x^2 - 1 & \text{si } x \geqslant 2 \end{cases}$$

$$2. \ h: x \longmapsto \lfloor x \rfloor + (x - \lfloor x \rfloor)^2$$

Exercice 14. Etudier la continuité des fonctions suivantes :

1.
$$f: x \longmapsto (x^2 - 1) \sin\left(\frac{1}{x - 1}\right)$$

2.
$$g: x \longmapsto \cos(\ln|x|)\ln(1+x)$$

3.
$$i: x \longmapsto |x| \sin(\pi x)$$

FONCTIONS CONTINUES SUR UN INTERVALLE

Exercice 15. Soit $f: \mathbb{R} \longrightarrow \mathbb{R}$ une fonction continue décroissante. Montrer que f a un unique point fixe.

Exercise 16. Soit $f:[0,1] \longrightarrow \mathbb{R}$ une fonction continue telle que f(0)=f(1). Montrer qu'il existe $\alpha \in \left[0,\frac{1}{2}\right]$ tel que $f\left(\alpha + \frac{1}{2}\right) = f(\alpha)$.

Exercice 17.

- 1. Soit $f:[0,+\infty[\longrightarrow \mathbb{R}$ une fonction continue vérifiant $\lim_{x\to +\infty} f(x)=\ell\in \mathbb{R}$. Montrer que f est bornée.
- 2. Soit $f: \mathbb{R} \longrightarrow \mathbb{R}$ une fonction continue vérifiant $\lim_{x \to -\infty} f(x) = \ell \in \mathbb{R}$ et $\lim_{x \to +\infty} f(x) = \ell' \in \mathbb{R}$. Montrer que f est bornée.

Exercice 18. Soit f et g deux fonctions continues sur un intervalle I. Montrer que les fonctions

$$\sup(f,g): x \longmapsto \sup(f(x),g(x))$$

$$\inf(f,g): x \longmapsto \inf(f(x),g(x))$$

sont continues sur I.

Exercice 19. Montrer que l'équation $x^2 \cos x + x \sin x + 1 = 0$ admet au moins une solution sur \mathbb{R} .

Exercice 20. Montrer que l'équation $\frac{1}{x+1}\cos x - x^2 + 1 = 0$ admet une unique solution sur $\left[0, \frac{\pi}{2}\right]$.

FONCTION RÉCIPROQUE

Exercice 21. Montrer que la fonction f définie sur \mathbb{R} par $f(x) = \frac{x}{1+|x|}$ est bijective de \mathbb{R} dans un sous-ensemble de \mathbb{R} à préciser. On déterminera ensuite la bijection réciproque.

Exercice 22. On considère la fonction $f: \mathbb{R} \longrightarrow \mathbb{R}$ $x \longmapsto x^3 + x - 8$

- 1. Montrer que f est bijective.
- 2. Combien l'équation $2f(x) + 3f^{-1}(x) = 10$ a-t-elle de solutions dans \mathbb{R} ? La résoudre ensuite.

DIVERS

Exercice 23. Soit f une fonction définie sur \mathbb{R} , continue en 0 et vérifiant f(2x) = f(x) pour tout réel x.

- 1. Montrer que : $\forall x \in \mathbb{R}, \ \forall n \in \mathbb{N}, \ f(x) = f\left(\frac{x}{2^n}\right)$
- 2. En déduire que f est constante.

Exercice 24. Soit f une fonction définie sur un intervalle I, continue sur I et vérifiant : $\forall x \in I$, $f(x)^2 = f(x)$. Montrer que f est constante.

SUITES DÉFINIES IMPLICITEMENT

Exercice 25. Soit n un entier naturel non nul. On considère la fonction f_n définie sur $[0, +\infty[$ par

$$\forall x \in [0, +\infty[, f_n(x) = 2x - 2 + \frac{\ln(x^2 + 1)}{n}]$$

- 1. Démontrer que l'équation $f_n(x) = 0$ admet une unique solution α_n sur $[0, +\infty[$.
- 2. Justifier que, pour tout entier naturel $n \ge 1$, on a $0 < \alpha_n < 1$.
- 3. Montrer que $f_n(\alpha_{n+1}) > 0$ pour tout $n \in \mathbb{N}^*$. En déduire la monotonie de la suite (α_n) .
- 4. Montrer qu'elle est convergente et déterminer sa limite.

Exercice 26.

- 1. Pour tout entier $n \ge 3$, montrer que l'équation $e^x = x^n$ possède une unique solution dans [0, n], que l'on note x_n . (Indication : considérer $f_n : x \longmapsto x^n e^{-x} 1$.)
- 2. Déterminer le signe de $f_{n+1}(x_n)$ pour tout $n \ge 3$.
- 3. Montrer que la suite $(x_n)_{n\geqslant 3}$ est convergente et déterminer sa limite.