Devoir surveillé 7

Mercredi 29 janvier 2025 Durée : 3h

Les calculatrices sont interdites. Les résultats des questions doivent être encadrés. Vous êtes invités à porter une attention particulière à la rédaction : les copies illisibles ou mal présentées seront pénalisées. Le sujet comporte 2 page(s).

Exercice 1.

On considère $\alpha \in \mathbb{R}$ et X une variable aléatoire suivant la loi binomiale de paramètres $n \in \mathbb{N}^*$ et $p \in [0,1]$.

- 1. Déterminer l'espérance et la variance de α^X .
- 2. Déterminer α et p pour que α^X soit centrée réduite.

Exercice 2.

- 1. Première partie.
 - (a) Montrer que $\binom{n}{k}\binom{k}{\ell} = \binom{n}{\ell}\binom{n-\ell}{k-\ell}$ pour tout $(k,\ell) \in \mathbb{N}^2$ tel que $\ell \leqslant k \leqslant n$.
 - (b) Soient $n \in \mathbb{N}^*$ et $(p,q) \in [0,1]^2$.

On considère une variable aléatoire réelle X suivant la loi binomiale de paramètres n et q, et une variable aléatoire réelle Y dont l'ensemble des valeurs est $[\![0,n]\!]$ et vérifiant

$$\forall (k,\ell) \in [0,n]^2, \ P_{[X=k]}(Y=\ell) = \begin{cases} 0 & \text{si } \ell > k \\ \binom{k}{\ell} p^{\ell} (1-p)^{k-\ell} & \text{si } \ell \leqslant k \end{cases}$$

Montrer que Y suit la loi binomiale de paramètres n et pq.

2. Deuxième partie.

Soient $(n,m) \in (\mathbb{N}^*)^2$.

On lance n pièces de monnaie dont la probabilité d'avoir "pile" est $p \in [0,1]$ et on note Z_1 la variable aléatoire égale au nombre de "pile" obtenus.

On ramasse alors les pièces qui ont donné "pile", puis on les lance et on note \mathbb{Z}_2 le nombre de "pile" obtenus lors de ce second lancer.

On ramasse alors les pièces qui ont donné "pile" lors du second lancer, puis on les lance et on note Z_3 le nombre de "pile" obtenus lors de ce troisième lancer.

Et ainsi de suite... On réalise de cette manière m lancers de pièces au total et on définit donc m variables aléatoires Z_1, \ldots, Z_m .

- (a) Déterminer la loi de Z_1 , son espérance et sa variance.
- (b) Montrer que Z_m suit la loi binomiale de paramètres n et p^m .

Exercice 3. On considère la suite réelle $(I_n)_{n\in\mathbb{N}}$ définie par : $\forall n\in\mathbb{N},\ I_n=\int_0^{\frac{\pi}{4}}\frac{\mathrm{d}x}{\cos^n(x)}$

- 1. Calculer I_0 et I_2 .
- 2. Déterminer les réels a et b tels que : $\forall t \in \mathbb{R} \setminus \{-1,1\}, \ \frac{1}{1-t^2} = \frac{a}{1-t} + \frac{b}{1+t}$.
- 3. En posant $t = \sin x$, déterminer I_1 .
- 4. Déterminer le sens de variation de la suite $(I_n)_{n\in\mathbb{N}}$.
- 5. Montrer que : $\forall n \geqslant 2$, $I_n \geqslant \int_{\frac{\pi}{4} \frac{1}{n^2}}^{\frac{\pi}{4}} \frac{1}{\cos^n x} dx \geqslant \frac{1}{n^2} \frac{1}{\cos^n (\frac{\pi}{4} \frac{1}{n^2})}$
- 6. En déduire le comportement de la suite $(I_n)_{n\in\mathbb{N}}$ lorsque n tend vers $+\infty$.
- 7. Montrer que : $\forall n \in \mathbb{N}$, $I_{n+2} = \frac{(\sqrt{2})^n}{n+1} + \frac{n}{n+1}I_n$. On pourra remarquer que $\frac{1}{\cos^{n+2}(x)} = \frac{1}{\cos^2(x)} \times \frac{1}{\cos^n(x)}$ pour tout $x \in \left[0, \frac{\pi}{4}\right]$ et tout $n \in \mathbb{N}$.

Exercice 4. On considère la fonction f définie sur $]0, +\infty[$ par :

$$\forall x \in]0, +\infty[, \ f(x) = \begin{cases} \frac{(x+1)\ln(x)}{2(x-1)} & \text{si } x \in]0, +\infty[\setminus\{1\}] \\ 1 & \text{si } x = 1 \end{cases}$$

- 1. Montrer que f est une fonction continue sur $]0, +\infty[$.
- 2. Justifier que f est de classe \mathcal{C}^1 sur les intervalles]0,1[et $]1,+\infty[$, puis calculer f'(x) pour tout $x\in]0,1[\cup]1,+\infty[$.
- 3. On admet que $\ln(x) = x 1 \frac{(x-1)^2}{2} + (x-1)^2 \varepsilon(x)$ où ε est une fonction définie au voisinage de 1 et vérifiant $\lim_{x \to 1} \varepsilon(x) = 0$.

Montrer que f est de classe C^1 sur $]0, +\infty[$ et déterminer f'(1).

- 4. (a) Montrer que pour tout x > 0, on a : $\ln(x) \le x 1$.
 - (b) On définit la fonction g par : $\forall x > 0$, $g(x) = x^2 1 2x \ln(x)$. Déterminer le signe de g.
 - (c) En déduire les variations de f.
- 5. Soit a un réel vérifiant a > 1. On définit la suite $(x_n)_{n \in \mathbb{N}}$ par

$$x_0 = a$$
 et $\forall n \in \mathbb{N}, \ x_{n+1} = f(x_n)$

- (a) Montrer que, pour tout n entier naturel, x_n existe et $x_n > 1$.
- (b) Montrer que : $\forall x > 1, \ f(x) < x$.
- (c) Montrer que $(x_n)_{n\in\mathbb{N}}$ est décroissante. En déduire que la suite $(x_n)_{n\in\mathbb{N}}$ admet une limite réelle ℓ que l'on précisera.
- 6. Ecrire une fonction Python qui prend en entrée le réel a et un entier n, puis renvoie le terme x_n .