Dérivées successives

ALGÈBRE : CAS DES POLYNÔMES

Exercice 1. Quel est la multiplicité de la racine 1 du polynôme $x \mapsto nx^{n+2} - (n+2)x^n + (n+2)x - n \quad (n \ge 1)$?

Exercice 2. Montrer que, pour tout entier naturel n, le polynôme $P_n: x \longmapsto 1 + \frac{x}{1!} + \frac{x^2}{2!} + \cdots + \frac{x^n}{n!}$ n'a pas de racine multiple.

Exercice 3. Montrer que :

1. $(x-1)^2$ divise $x^{n+1} - x^n - x + 1$ $(n \in \mathbb{N})$.

2.
$$(x-1)^2$$
 divise $\left(\sum_{k=0}^{n-1} x^k\right)^2 - n^2 x^{n-1} (n \ge 2)$.

Exercice 4. Déterminer les polynômes P de $\mathbb{R}[x]$ tels que $\begin{cases} \deg(P) = 6 \\ (x-1)^3 \text{ divise } P(x) + 1 \\ x^4 \text{ divise } P(x) + 2 \end{cases}$

(Indication: chercher d'abord P'.)

Exercice 5.

- 1. Soit un polynôme $P \in \mathbb{R}[x]$ de degré au moins égal à 2 vérifiant : $\forall x \in \mathbb{R}, (x^2 + 1)P''(x) 6P(x) = 0$. Quel est le terme dominant de $x \longmapsto (x^2 + 1)P''(x) 6P(x)$? Que déduire du degré de P?
- 2. En déduire tous les polynômes $P \in \mathbb{R}[x]$ vérifiant : $\forall x \in \mathbb{R}, (x^2 + 1)P''(x) 6P(x) = 0$.

ANALYSE: CAS DES FONCTIONS

DÉRIVÉES D'ORDRE SUPÉRIEUR

Exercice 6. Quelle est la classe de la fonction $f: x \mapsto \begin{cases} e^x & \text{si } x \ge 0 \\ x+1 & \text{si } x < 0 \end{cases}$?

Exercice 7. Soit $f: x \longmapsto \begin{cases} e^{-\frac{1}{x^2}} & \text{si } x \in \mathbb{R}^* \\ 0 & \text{si } x = 0 \end{cases}$.

- 1. Montrer que f est de classe \mathscr{C}^{∞} sur \mathbb{R}^* .
- 2. Montrer que : $\forall n \in \mathbb{N}, \exists P_n \in \mathbb{R}[X], \forall x \in \mathbb{R}^*, f^{(n)}(x) = \frac{P_n(x)}{r^{3n}} e^{-\frac{1}{x^2}}.$
- 3. En déduire que f est de classe \mathscr{C}^{∞} sur \mathbb{R} et $f^{(n)}(0) = 0$ pour tout $n \in \mathbb{N}$.

Exercice 8. Justifier que chacune des fonctions suivantes est dérivable n fois puis en donner la dérivée n-ième $(n \in \mathbb{N} \setminus \{0\})$.

1.
$$x \longmapsto \frac{1}{x}$$

5. $x \longmapsto \sin(ax+b)$ où $(a,b) \in (\mathbb{R}^*)^2$

 $2. x \longmapsto \ln(x)$

6. $x \longmapsto x^2 e^x$

 $3. \ x \longmapsto \sin x$

7. $x \longmapsto (1+x)^n x^2$

 $4. x \longmapsto \cos x$

Exercice 9. Soient $n \in \mathbb{N}^*$ et la fonction $f_n : x \longmapsto x^{n-1} \ln(x)$ définie sur $]0, +\infty[$. Montrer que f_n est de classe \mathscr{C}^n sur $]0, +\infty[$ et déterminer $f_n^{(n)}$.

FONCTION RÉCIPROQUE

Exercice 10. Soit la fonction $f: x \longmapsto x^3 + x$ définie sur \mathbb{R} .

- 1. Montrer que f admet une réciproque g dérivable sur \mathbb{R} et exprimer g' en fonction g.
- 2. Quelle est la classe de g?

Théorème de Rolle et théorème des accroissements finis

Exercice 11. Soit f une fonction de classe \mathscr{C}^1 sur [a,b] et deux fois dérivable sur]a,b[. On suppose qu'il existe trois points de la courbe de f alignés.

Montrer que f'' s'annule au moins une fois sur a, b.

(Ind. : $si \ x < y < z \ sont \ les \ abscisses \ des \ trois points \ alignés, \ comparer \ \frac{f(y) - f(x)}{y - x} \ et \ \frac{f(z) - f(y)}{z - y}$.)

Des inégalités

Exercice 12. Montrer les inégalités suivantes :

1.
$$\forall x \in \left] 0, \frac{\pi}{2} \right[, \ 2x < \sin 2x + \tan x$$

2.
$$\forall x \in]-\pi, \pi[, \ln(1+\cos x) \leq \ln 2 - \frac{1}{4}x^2$$

3.
$$\forall x \in \left[0, \frac{\pi}{2}\right], \sin x \geqslant \frac{2}{\pi}x + \frac{x}{12\pi}(\pi^2 - 4x^2)$$

4.
$$\forall x \in]0, +\infty[, e^{\frac{x}{x+1}} < 1 + x]$$

Formule de Taylor avec reste intégral et inégalité de Taylor-Lagrange

Exercice 13. Montrer que :
$$\forall x \in \left[0, \frac{\pi}{2}\right], \ 1 - \frac{x^2}{2} \leqslant \cos x \leqslant 1 - \frac{x^2}{2} + \frac{x^4}{24}.$$

Exercice 14. Montrer que :
$$\forall x \in [0, \frac{\pi}{2}[, \tan x \ge x + \frac{x^3}{3}]$$
.

Exercice 15. Grâce à la formule de Taylor avec reste intégral appliquée à la fonction $t \mapsto \ln t$, montrer que $\lim_{n \to +\infty} \sum_{k=1}^{n} \frac{(-1)^{k-1}}{k} = \ln 2.$