Développements limités

CALCULS

Exercice 1. Déterminer le DL à l'ordre n en a des fonctions suivantes :

1.
$$a = 0$$
, $n = 7$, $f(x) = \ln(1 - x^2)$

4.
$$a = 0$$
, $n = 3$, $f(x) = \sqrt{4+x}$

2.
$$a = 0$$
, $n = 6$, $f(x) = \frac{\sin x}{x}$

5.
$$a = 0$$
, $n = 15$, $f(x) = 81(x^2 + \cos x + \sin x - e^x)^4$
6. $a = +\infty$, $n = 2$, $f(x) = \sqrt[3]{x^3 + x^2} - \sqrt[3]{x^3 - x^2}$

3.
$$a = 0, \ n = 2, \ f(x) = \sqrt{\frac{1-x}{1+x}}$$

DL à l'ordre 1 d'une fonction réciproque

Exercice 2. Soit la fonction f définie sur $\left] -\frac{\pi}{2}, \frac{\pi}{2} \right[$ par $f(x) = 2\tan(x) - x$. Montrer que f admet une fonction réciproque f^{-1} , puis montrer que f^{-1} possède un développement limité à l'ordre 1 en 0 et le déterminer.

APPLICATIONS

Exercice 3. Soient $f: \mathbb{R} \to \mathbb{R}$ de classe C^2 et $a \in \mathbb{R}$. Déterminer $\lim_{h \to 0} \frac{f(a+h) - 2f(a) + f(a-h)}{h^2}$.

Exercice 4. Déterminer un équivalent simple de $(1+x)^{\frac{\ln x}{x}} - x$ en 0.

Exercice 5. Calculer les limites suivantes :

1.
$$\lim_{x \to 0} \frac{e^x - 1 - \sin x}{1 - \cos x}$$

3.
$$\lim_{x \to 0} \left(\frac{1}{\sin^2 x} - \frac{1}{x^2} \right)$$

2.
$$\lim_{x \to 0} \frac{1 - \cos x}{x^2 (e^x - \sqrt{1 + x} - \frac{1}{2} \ln(1 + x))}{1 - \cos x - \frac{x}{2} \sin x}$$

4.
$$\lim_{x \to +\infty} \left(x \sin \frac{1}{x} \right)^{x^2}$$

Exercice 6. Soit f la fonction définie sur $\mathbb{R} \setminus \{1\}$ par $f(x) = \frac{x\sqrt{x^2+1}}{x-1}$.

- 1. Déterminer la tangente en 0 de la courbe de f. Etudier la position de la courbe par rapport à la tangente.
- 2. Etudier la branche infinie de la courbe de f en $+\infty$.

Exercice 7. Etudier les branches infinies de la fonction f définie par $f(x) = \frac{x^2}{x+1} e^{\frac{1}{x}}$.

Exercice 8. Donner une condition nécessaire et suffisante sur le couple de réels (a,b) pour que la fonction $f: x \mapsto \frac{\ln(1+x) + a(e^x - 1) + b \sin x}{x^3}$ admette une limite finie en 0.

Exercice 9. On considère la fonction f définie par $f(x) = \frac{1 - \cos x - x \sin x}{x^2}$ pour tout $x \in \mathbb{R}^*$.

- 1. Montrer que f est prolongeable par continuité en 0.
- 2. On note encore f ce prolongement. La fonction f est-elle de classe \mathcal{C}^1 sur \mathbb{R} ?